Совершенство непосредственности: 80 лет эволюции моторов с прямым впрыском

Содержание

«Грязнуля» FSI: чем «болеют» моторы с непосредственным впрыском и как их вылечить

Совершенство непосредственности: 80 лет эволюции моторов с прямым впрыском

Что такое послойное смесеобразование, и почему моторы с непосредственным впрыском завоевывают  мир

Термин «непосредственный впрыск» хорошо известен, поскольку данная конструкция широко применяется автопроизводителями еще с 1990-х годов – вспомним, например, моторы GDI (Gasoline Direct Injection – прямой впрыск бензина) от Mitsubishi.

Похожая система сейчас используется концерном Volkswagen, но именуется иначе – FSI, сокращение от Fuel Stratified Injection — «послойный» впрыск топлива». Так в чем же отличие «джидаев» от тех систем, которые применяются теперь? Там и там – непосредственный впрыск, но вот состав самой смеси различается.

Если на первых моделях топливная форсунка представляла собой обычный распылитель, при котором получалась однородная (гомогенная) смесь, и различие между непосредственным и распределенным (MPI) впрыском было только в количестве отверстий распылителя, их расположении и разных показателей давления, то на современных моделях производители уже научились разделять топливовоздушную смесь на зоны с переобогащенной и переобедненной смесью. Зачем это понадобилось? Из-за характеристик сгорания переобедненной смеси. Перечислим плюсы, которые мы получаем во время работы ДВС на такой смеси.

  1. Высокая температура сгорания, высокий КПД и, как следствие, высокий крутящий момент на выходе.
  2. Сокращение расхода топлива (до 15 %, но это только в теории).
  3. Малая эмиссия углеводородов в выхлопных газах.

Вполне достаточно, чтобы заработать на звание «Мотор года», не находите? Внедрение таких моторов пошло полным ходом с 2005 года. В качестве примера можно вспомнить массовый переход на FSI-моторы концерна VW.

И, разумеется, первые «блины» вышли комом – достаточно спросить обладателей первых Passat B6 с атмосферными FSI-моторами, выпущенных в 2006 году, с их многочисленными прошивками ЭБУ и проблемами с запуском зимой. «Четырехколечное» подразделение концерна поступило мудрее, не став рисковать своим имиджем ради новых технологий.

Вот выдержка из материала самообучения по двигателю 2.0 TFSI, то, что написано в самом начале документа (здесь и далее цитаты из официальных и обучающих документов VW AG).

Впрочем, полностью отказаться от послойного смесеобразования производитель все же не смог. Давайте рассмотрим подробнее, что же такое послойное смесеобразование.

Хорошо видно, что область использования переобедненных смесей находится в промежутке от 1000 до 3500 об/мин, т.е. в наиболее часто используемом водителями диапазоне оборотов ДВС . Если брать диаграмму относительно нагрузки ДВС:

Опять мы видим в области средних/малых нагрузок работу именно на переобедненной смеси. Каким же образом реализуется такая работа? С помощью ввода специальных управляемых воздушных заслонок во впускном коллекторе…

…и ориентации (и формы) распылителей форсунок, имеющих возможность впрыска топлива прямо в цилиндры (непосредственный впрыск), собственно и становится возможным осуществить процесс работы ДВС на обедненной смеси.

Предлагаем взглянуть на моделирование начального процесса без привязки к конкретному исполнению мотора, как это воспринималось разработчиками системы непосредственного впрыска Bosch MED 7.

Обратите внимание: поток восходящий, симметричный, образующий две равнозначные, однонаправленные циркуляции (топливное «облако» и воздушный поток) в объеме ½ поперечной плоскости цилиндра.

Степень насыщения воздушного «факела» топливом сильно зависит от формы днища поршня, но довольно слабо – от смещения и отклонения самой топливной струи, в данном случае сглаживаемых самой формой днища поршня.

Трудности реализации и необходимые профилактические меры

При всех положительных моментах эксплуатации двигателя на переобедненных смесях у современных автомобилей имеются проблемы, у которых нет «общих точек соприкосновения» со старым семейством MPI-впрыска, что в свою очередь вызывает трудности в диагностике.

Чтобы понять, какие изменения последовали в конструкции, и сравнить, надо обратиться к самому началу появления данного типа системы впрыска в производстве. Конкретную реализацию разберем на примере моделей VW AG.

Итак, сравнение поршневой группы атмосферного и турбированного ДВС…

В первом случае видна схема «встречных потоков» описанных ранее, во втором очевидно играет гораздо большую роль предварительное завихрение потока воздуха во впускном коллекторе (в этом одно из различий исполнения данных моторов) и полная направленная циркуляция в полном объеме цилиндра.

Предварительное завихрение воздушного потока во впускном коллекторе и обедняет классическую однородную (гомогенную) смесь при смешивании воздушного потока с топливом.

На практике первая схема обеспечивает лучшее охлаждение поршня (а с ним – эффективную борьбу с детонационными явлениями при рабочем цикле, о чем подробнее поговорим далее).

В то же время для таких моторов характерна проблема зимнего пуска, при котором свечи просто «заливало» топливом, и мотор не запускался, а самое смешное в этом вопросе (думаю, владельцы Passat B6 первых годов выпуска об этом хорошо помнят), что самая простая «жигулевская» и даже не первой свежести свеча помогала запустить замерзший ДВС, после чего следовала еще одна замена – возвращение оригинальных свечей назад. Последовало порядка десятка изменений версий программного обеспечения блока управления ДВС, прежде чем удалось решить эту проблему. Разумеется, владельцев ДВС с турбокомпрессором такие проблемы не коснулись. Пуск на гомогенной смеси при минусовой температуре воздуха отработан автопроизводителями до мелочей. В дальнейшем на цепных моторах 2008 года и далее эксперименты с формой днища поршня проводить не стали. Обычно такие поршни обладают плоской поверхностью со стандартными выемками под клапана.

Или имеют ярко выраженную сферическую вогнутую поверхность по всей ширине гильзы цилиндров, назначение которой будет понятно немного позже.

А теперь посмотрим на организацию подачи топлива и воздуха на этих ДВС:

Используются форсунки с 6-ю отверстиями, что положительно влияет на качество распыления топлива. Обратите внимание на расположение топливной форсунки и впускного канала: они находятся в одной плоскости, а это значит, суммарного восходящего потока уже не получится.

Учитывая, что топливо должно успеть равномерно распределиться по топливовоздушному заряду, получаем единственный вариант —организацию встречного потока с довольно большим дефицитом по времени эффективного распыления. Разумеется, об эффективном охлаждении поршней в этом случае речь тоже не идет.

Давайте посмотрим, что думают об этом сами создатели.

Довольно простое решение подачи топлива непосредственно в зону свечи, т.е. топливный заряд оборачивается, условно говоря, в «кокон» воздушного заряда (эффект дополнительного охлаждения смеси достигается ее изолированием воздушным потоком, если говорить точнее).

В итоге в зоне электрода свечи мы имеем обогащенную, легко воспламеняемую смесь, а в остальных местах камеры сгорания – переобедненную.

Но путь смешивания топливного и воздушного зарядов очень короткий, в отличие от схемы, обсуждаемой ранее, а нормальное перемешивание, с отражением от поверхности поршня и равномерным распределением по фронту потока (как это было с атмосферным мотором), к сожалению, невозможно.

Именно этот аспект и влияет на возможную проблемную работу ДВС в целом, а причина возникновения трудностей стабильного воспламенения довольна простая:

Симптомы и признаки загрязнения форсунок

Да, основная причина загрязнение распылителей форсунок и приносит наибольшую головную боль обладателям современных FSI-моторов. Обычно сопровождается это вибрацией, пропусками воспламенения при холодном пуске, а также повышенным расходом топлива и дерганьем автомобиля при разгоне. Почему так происходит, вы, наверное, уже догадались.

Разумеется, из-за отклонения топливной струи от расчетной траектории, ведь в данном случае совсем небольшого отклонения вполне достаточно, чтобы резко «обеднить» зону вокруг центрального электрода, при котором устойчивого воспламенения уже не будет. Но и это далеко не последняя проблема в данном ДВС.

Довольно часто обсуждают следующее явление на впускных клапанах:

А вот так выглядит начало такого процесса:

Обратите внимание: налет мягкий, легко снимаемый и совершенно непохожий на тот твердый светло-бурый налет на MPI-моторах, который иначе как механической обработкой не снять. Больше всего он напоминает налет на впускных коллекторах дизельных моторов. И в этом есть часть ответа на вопрос по образованию такого нагара.

Очень часто на вопрос о загрязнении впускных клапанов и форсунок отвечают стандартными фразами: «некачественное топливо», «несвоевременное обслуживание» или «неправильно подобранное масло».

Но, к сожалению, даже при использовании высококачественных материалов и сокращенном интервале обслуживания ситуация радикальным образом не изменится. Чтобы понять причину этой проблемы, давайте рассмотрим диаграмму фаз газораспределения.

Один из наиболее характерных режимов, описывающий важность регулирования фаз газораспределения, на стандартной круговой диаграмме выглядит так:

Но, как быть с увеличением NOx при повышении температуры отработавших газов? Каталитический нейтрализатор для данного соединения человечество еще не придумало.

Была изобретена система возврата отработавших газов EGR, которая и занималась снижением температуры ОГ и, как следствие, уменьшением доли NOx в выхлопных газах.

Но поскольку со временем клапан EGR не сильно отличался по виду от впускных клапанов, выложенных ранее, по степени негативных эмоций он прочно занимал второе место и у механиков, и у владельцев. Одна из самых «оптимистичных» конструкций клапана EGR выглядела так:

Тут конструкторы немного погорячились: поставить дроссельную заслонку на выпускные газы?! Кто хоть раз видел дроссельную заслонку на впуске, может представить, как она будет выглядеть на выпуске. Думаю, понятно, почему последствия загрязнения и отказа этого клапана занимают второе место по негативу у владельцев Passat B6.

Однако, несмотря на многочисленные отказы регулирующих элементов этой системы, надо было как-то решать данный вопрос согласно постоянно ужесточающимся экологическим нормам. В ходе изысканий появилась система внутренней рециркуляции отработавших газов.

Реализована она была как составляющая другой системы и не имела своих компонентов.

Теперь начинает прояснятся происхождение отложений на впускных клапанах, как и довольно слабая их зависимость от топлива, обслуживания, масла и т.д.

Надо учитывать, что и загрязнение форсунок, и загрязнение поверхности впускных клапанов – процессы связанные и влияющие на один фактор – качество смеси в районе центрального электрода.

В то же время заметим, что определяющим фактором влияния на характер воспламенения в цилиндрах все же является именно загрязнение распылителей форсунок.

Этот «процесс» начинает беспокоить владельцев с 35 000 – 45 000 км пробега, и, увидев ошибки по «пропускам воспламенения», далеко не всегда начинают решать проблему с «правильного конца». А что же официальные лица? Неужели такой проблеме не уделяется внимание? Так сказать нельзя. Официально существует пункт при техническом обслуживании. Для примера возьмем Audi Q5:

Но возникает вопрос: а говорили ли вам о необходимости использования этой промывки на официальном ТО? А о регулярности такого мероприятия? Ведь подобные рекомендации для эксплуатации автомобиля в России есть и у BMW, и у Mercedes-Benz, и у других крупных автопроизводителей.

Также нужно понимать, что использование такой промывки, учитывая ее концентрацию в полном баке, играет только профилактическую роль и полностью не очищает распылители.

Но, разумеется, длительность нормального функционирования топливных форсунок увеличивает и рекомендуется к использованию.

А теперь коснемся того, почему же так важно, чтобы распылители топливных форсунок были исправными (чистыми).

Дело в том, что конструкция поршней новых двигателей FSI отнюдь не обладает весомым запасом прочности к детонационному сгоранию смеси, поскольку главный принцип построения таких моторов – максимальное облегчение конструкции и снижение трения.

И тут уместно вспомнить, что днище поршня в таком типе конструкции не имеет возможности омываться (охлаждаться) топливной струей, а это значит, что при любом нарушении процесса воспламенения вполне возможна детонация и, как следствие, разрушение самого поршня (перемычек), что как раз и происходит на моторах 1.4, 1.8 и 2.0 TSI.

Отметим, что, проектируя третье поколение моторов серии 888, конструкторы VAG учли этот момент и создали смешанный впрыск MPI+FSI, который как раз и призван обойти описанные проблемы. Но вот обладатели автомобилей VAG, выпущенных до 2012 года, должны учитывать и такую печальную вероятность событий.

Надеемся, что после прочтения этого материала у вас не возникнет вопроса, для чего необходимо использовать промывку топливной системы и очищать детали впускной системы двигателей с непосредственным впрыском.

Материал подготовлен экспертом компании turbo-union.ru

Источник: http://5koleso.ru/articles/garazh/gryaznulya-fsi-chem-boleyut-motory-s-neposredstvennym-vpryskom-i-kak-ih-vylechit

Взрыв гбо безопаснее взрыва бензина

Совершенство непосредственности: 80 лет эволюции моторов с прямым впрыском

Вряд ли кто-то будет спорить, что ГБО выгодно. Но насколько оно надежно? Ведь многие слышали, а некоторые даже своими глазами видели последствия пожара на автомобиле с газобаллонным оборудованием.

Конечно, причиной не всегда является ГБО, но дополнительные риски для безопасности оно все же несет.

Современное оборудование предоставляет определенные гарантии, но стоит порой дороговато, а если обслуживание проводится нерегулярно и не с должным качеством, то исключать взрыв газового баллона в машине невозможно. О том, как обезопасить себя и пассажиров, мы и расскажем.

Взрывоопасно ли ГБО

Используемый газ, будь то пропан или метан, не имеет ни цвета, ни запаха. Не важно, жидкий он или сжатый.

Чтобы можно было почувствовать утечку, в газ добавляют специальные составы – одоранты.

Дело тут в сочетании нескольких сложно учитываемых факторов – повышения температуры и расширения поршня из-за отсутствия охлаждения бензином, неимения разжижения и «размытия» масляной пленки в зоне остановки верхнего компрессионного кольца в ВМТ и отсутствия смазки бензином.

Завод против гаража

Как видите, проблем хватает. Производители знают о них, и двигатели для работы на газу в заводском исполнении сильно отличаются от «обычных».
Так, список переделок в моторе VW 1.

4 TSI ЕА111 «под газ» очень значительный, он включает в себя другую ГБЦ, иные клапаны, новые поршни и даже шатуны и вкладыши, масляный насос с большим давлением масла и перекалиброванный на меньшую температуру термостат.

Запах можно почувствовать задолго до того, как концентрация газа в воздухе станет взрывоопасной.

Кстати, пропан в этом плане немного опаснее, чем метан, но за счет меньшего давления система на пропане в целом оказывается безопаснее.

Но даже сильно насыщенный газом воздух так просто не воспламенится. Нужна хорошая искра. Поэтому взрывоопасность ГБО нужно рассматривать в комплексе с оценкой состояния других систем автомобиля.

Важно Сам по себе газовый баллон не взрывоопасен абсолютно. Толстые стенки не дадут и шанса через них просочиться.
Разве только, если баллон «разопрет» по швам.

Статистика упорно говорит о том, что газ не более опасен, чем бензин, и его недостатки не настолько критичны, чтобы отказаться от ГБО совсем.

Выпуск этих машин исчислялся десятками тысяч экземпляров, и они позволяли реально экономить на бензине, ведь карбюраторные V8 этих машин «кушали» его немало.

На фото: ЗиЛ 138 Опытный ‘1976

За и против

Совершенство непосредственности: 80 лет эволюции моторов с прямым впрыском

Битва в воздухе Так уж получилось, что первые двигатели внутреннего сгорания были рассчитаны на работу на газовоздушной смеси, а вовсе не на жидкости. И именно возможность создания простейшего устройства испарения…

Помимо экономии на топливе, газовое оборудование позволяло серьезно очистить выхлоп.

Несмотря на несовершенство систем газового питания, машины на сжатом газу (метане) обеспечивали чистоту выхлопа почти на уровне современных авто.

В этом случае исключить происшествие невозможно, что подтверждает статистика взрывов газовых баллонов в автомобилях, случившихся в 2017 году. Например, весной, на севере Москвы, из-за взрыва некачественного баллонного оборудования в «Газели» пострадало еще восемь соседних машин, в большинстве из которых находились люди.

Однако статистика показывает, что газ ненамного опаснее бензина, более того, его недостатки не настолько существенны по сравнению с преимуществами.

К тому же, сейчас активно используются установки четвертого поколения, абсолютная безопасность которых достигнута при помощи управления электроникой. Используемый газ в баллоне может быть двух видов:

В обоих вариантах он не имеет ни явно выраженного запаха, ни цвета, по консистенции бывает жидким и сжатым.

Кстати, остальная Европа по газификации отстает на порядок, набирая в сумме четверть миллиона.

А вот в Иране количество таких машин больше четырех миллионов, сказывается наличие сложностей с переработкой нефти. Примерно столько же машин с газовым оборудованием в Китае.
Внимание И китайцы наращивают парк газобаллонных авто большими темпами, надеясь таким образом хоть частично решить экологические проблемы.

Подводные камни

После прочтения рекламного листка установщиков ГБО кажется, что это самое лучше решение. Бюджетная система на сжиженном газе стоит всего-то от 30 тысяч рублей с установкой.

Газовый баллон можно поставить вместо «запаски», которой все равно пользуются крайне редко. Цена газа составляет меньше половины стоимости бензина. Октановое число – около 105 единиц, и форсированные моторы это оценят.

Баллон был цел, а легкий шум выходящего газа свидетельствовал, что предохранительная заглушка выполнила свою задачу — расплавилась и не дала баллону взорваться, даже если бы отказал перепускной клапан. Результат был бы совсем другим, «поджарь» мы баллон старого типа без клапанов безопасности.

ПРЕДСКАЗУЕМЫЕ ПОСЛЕДСТВИЯ Точно такие же испытания мы проводили в 1999 году -с той лишь разницей, что тогда тестировали два баллона с клапанами и без них. Первый повел себя так же, как и в нынешнем тесте, — периодически стравливал газ через перепускной клапан.

А без-клапанный через три-четыре минуты нахождения на плите взорвался, разбросав осколки в радиусе 80 м, — как настоящая бомба.

Поэтому в Европе закон, вступивший в действие с 1 января 2001 года, предписывает владельцам автомобилей, работающих на газе, менять баллоны через 10 лет после установки.

Однако многие автовладельцы, раздумывая о переходе на этот вид горючего, опасаются за свою безопасность. Далее мы расскажем, как эксплуатировать ГБО в 2018 году, чтобы предупредить взрыв газового баллона в машине.

Какие требования предъявляются к баллонам для ГБО

Некоторые водители считают использование сжатых горючих газов в качестве топлива нежелательным.
Они опасаются, что такие газы – пропан и метан – не имеют запаха, значит, их утечку заметить непросто.

Наиболее распространенные причины возможных аварий:

  • использование некачественного оборудования и деталей баллона;
  • неправильная установка и настройка ГБО;
  • микротрещины и коррозии, провоцирующие утечки газа из баллона;
  • проблемы с герметичностью ГБО;
  • нарушение температурного режима использования ГБО;
  • превышение допустимой нормы наполнения баллона газом.

Наиболее пристальное внимание следует уделить первым двум пунктам, которые обеспечивают 80% безопасности. Разумеется, пренебрегать общедоступными мерами предосторожности также не следует, использовать только в соответствии с имеющимися техническими инструкциями.

Как избежать опасности

Не стоит строить иллюзий, если взрыв баллона в машине произошел, то владельцу, а также всем присутствующим, поможет только чудо.

Дело в том, что взрыв ГБО практически не отличается от взрыва бомбы, и моментально вспыхивающий пожар уничтожает всех. Поэтому, как уже было сказано выше, необходимо, чтобы проверка ГБО на авто проводилась регулярно, и подходить к этому следует максимально ответственно. Более того, не стоит экономить на оборудовании и установке – последующее использование и так окупит все затраты сполна.

Монтаж и тестирование должны всегда проводиться на специализированных станциях, а процессу наполнения баллона стоит уделить пристальное внимание. Во-первых, газ не должен быть подделкой и, во-вторых, возможный объем наполнения в ГБО не должен быть превышен.

В его металлических частях и уплотнителях со временем возникают микротрещины, через которые начинается утечка газа. Своевременная проверка аппаратуры гарантирует отсутствие опасных последствий в период между проверками;

  • нагрузки на баллон, превосходящие допустимые значения и возникающие в моменты автомобильных аварий;
  • нагревание баллона во время пожара в машине. Взрыв ГБО на авто возможен и в результате его пребывания под палящим солнцем;
  • превышение допустимого давления в баллоне вследствие его переполнения в ходе заправки.

Как избежать взрыва баллона

Лишних нагрузок на баллон можно избежать, только предупредив аварии. Впрочем, в дорожных происшествиях виновниками бывают и другие участники движения. Тем не менее водитель может сделать немало, чтобы предупредить взрыв газового баллона.

Источник: http://pravogarant23.ru/vzryv-gbo-bezopasnee-vzryva-benzina/

Непосредственный впрыск топлива — эволюция системы

Совершенство непосредственности: 80 лет эволюции моторов с прямым впрыском
Это самый популярный представитель моторов с непосредственным впрыском топлива.

Современные моторы с непосредственным впрыском топлива имеют славу весьма экономных силовых агрегатов.

Однако по сети интернет ходит множество слухов о том, что топливные насосы к таким моторам стоят чуть ли не половину двигателя. Кроме того, существует множество других стереотипов ненадежности системы непосредственного впрыска топлива.

В данной статье мы расскажем об эволюции системы непосредственного впрыска топлива.

История возникновения системы непосредственного впрыска топлива

Среди современных систем непосредственного впрыска топлива многим автомобилистам хорошо знакомы аббревиатуры FSI и GDI. Первая из них принадлежит немецкому автомобильному концерну Volkswagen. Вторая является собственностью японского автомобильного концерна Mitsubishi. Все они основываются на технологии — системе непосредственного впрыска топлива.

Самый первый мотор с непосредственным впрыском топлива — это Daimler-Benz DB601. Его испытания начались в далеком 1935 году — 81 год назад. В серию модель двигателя Daimler-Benz DB601 пошла в 1937 году. Чуть позже лицензию на ее производство купил итальянский производитель Alfa Romeo и японская компания Kawasaki.

Преемник данного двигателя модель Daimler-Benz DB605 получила, кроме непосредственного впрыска топлива, еще и систему турбонаддува. Новая модель получила весьма высокую степень сжатия как для тех лет — 7,5.

Этот турбированный мотор V12 с непосредственным впрыском топлива устанавливался не на автомобили, а на немецкие истребители Второй мировой войны Messerschmitt Мe109. Другие “страны Оси”, такие как Италия и Япония получили лицензию на производство двигателя Daimler-Benz DB605. Это добавило еще больше популярности данному типу моторов.

В дальнейшем авиационные двигатели с непосредственным впрыском топлива начали изготавливать и в СССР. Первым российским двигателем с непосредственным впрыском топлива стал АШ-82-ФН — мотор конструкции Швецова.

Сразу же после Второй Мировой войны система непосредственного впрыска топлива начала внедряться и на моторы легковых автомобилей. Однако свою востребованность она нашла в гоночных соревнованиях.

Известные автомобильные производители Mercedes и Ferrari начали опробовать систему непосредственного впрыска топлива на моторах гоночных автомобилей.

Всем известный многократный чемпион Формулы 1 Хуан Мануэль Фанхио выиграл чемпионаты сезонов 1954 и 1955 годов на автомобиле Mercedes Typ W196, который оснащался мотором с непосредственным впрыском топлива.

Первые карбюраторные моторы для легковых автомобилей имели простую конструкцию системы непосредственного впрыска топлива. В ней применялся ТНВД, практически похожий на дизельный, и простые форсунки.

В зависимости от автомобильного производителя непосредственный впрыск отличался только конструкцией форсунок. Так их могли ставить сбоку, сверху либо снизу камеры.

ТНВД различались между собой только способами регулировки и количеством режимов работы.

ТНВД системы непосредственного впрыска топлива похож на дизельный насос высокого давления.

Однако очень скоро автомобильный производители поняли, что система непосредственного впрыска топлива является весьма сложной и ненадежной для массового производства автомобилей. Она отошла на второй план у производителей автомобильных двигателей по следующим причинам:

  • Сложная настройка система непосредственного впрыска топлива;
  • Уязвимость форсунок, которые быстро закоксовывались;
  • Более простая и надежная конструкция карбюратора и распределенного впрыска топлива.

Современная история непосредственного впрыска топлива

В 90-годы прошлого столетия непосредственный впрыск топлива вновь был применен автомобильными производителями Японии. Так компания Mitsubishi выпустила моторы серии GDI, а японский автомобильный производитель Toyota — двигатели D4. Обе эти серии имели непосредственный впрыск топлива. Однако у них не получилось революционного эффекта.

Японский производитель Mitsubishi пытался добиться работы мотора на сверхобедненной смеси для высокой экономии топлива. Однако в итоге данные моторы чаще всего отказывались работать из-за того, что этого не позволяла прошивка. Увидев плохой опыт своих соотечественников, в японской компании Тойота решили вообще не выводить мотор с непосредственным впрыском топлива на экспорт.

Непосредственный впрыск прижился на малообъемных моторах с турбонаддувом.

Как только автомобильные производители сумели избавиться от “детских болезней” своих новых моторов с непосредственным впрыском топлива, данную систему начали использовать и другие автомобильные бренды.

Так на свет появилась линейка моторов FSI от немецкого автомобильного концерна Volkswagen. Затем он же выпустил данные моторы с турбонаддувом, назвав это все линейкой TFSI.

После этого немецкий автомобильный концерн Mercedes-Benz выпустил двигатели CGI, которые в первые годы оснащались компрессором, а затем в них появился турбонаддув. Чуть позже непосредственный впрыск топлива на моторах мы увидели в автомобилях Opel, BMW и Ford.

Кстати, стоит заметить, что автомобильные компании-первопроходцы Toyota и Mitsubishi последние два десятилетия держали в своей модельной линейки минимум моделей, оснащенных моторами с непосредственным впрыском топлива, пока другие автомобильные производители штамповали моторы за моторами с этой системой.

Это связано с тем, что опыт показал — непосредственный впрыск топлива эффективно работает на моторах с малым рабочим объемом и оснащенных турбиной. Производители Toyota и Mitsubishi в последнее время ставят на свои модели совсем другие моторы — атмосферные двигатели рабочим объемом 2 литра и более.

Источник: https://MotorMania.ru/auto-articles/neposredstvennyj-vprysk-topliva-evolyuciya-sistemy.html

Эволюция ДВС: Больше сил при меньшем объёме

Совершенство непосредственности: 80 лет эволюции моторов с прямым впрыском

Полтора десятка лет – немалый срок в развитиии автомобильных технологий: некоторые изобретения можно назвать революционными. Но и техника, совершенствовавшаяся постепенно, существенно улучшила наш транспорт. Сегодня мы вспомним, как развивались двигатели внутреннего сгорания.

Последние пятнадцать лет для ДВС можно назвать прогрессивными. Борьба за мощность, экономичность и экологичность обеспечила этому типу моторов ранее невиданный прорыв. В конструкции самых массовых силовых агрегатов появились сложнейшие узлы, в конце прошлого века доступные только в премиум-классе.

В самых популярных классах авто привычные многолит­ражные двигатели все чаще уступают место малообъемным, но мощным и тяговитым моторам. Сегодня не редкость 1,4-литровая «четверка» под капотом престижного внедорожника или 1,0-литровый «движок» в седане С-класса.

Двигатели теряют не только рабочий объем, но и цилиндры – 3- и даже 2-цилиндровые моторчики со своими характерными тарахтением и вибрациями совершенствуются и неторопливо, но уверенно покоряют рынки развитых стран.

В Украине не все подобные тенденции получили активное развитие, но сколько мы продержимся при почти европейских ценах на топливо? Кстати, о топливе: его качество в Украине все реже служит причиной отказа в поставках той или иной модели силового агрегата.

Мы давно эксплуатируем получающие широкое распространение двигатели с непосредственным впрыском, в последние 5-6 лет большинство импортеров завозят в страну самые современные дизели и обеспечивают их европейской гарантией.

Однако не все моторостроительные новации минувшего 15-летия попали на конвейер – часть осталась на конструкторских кульманах и под капотами опытных машин, к примеру, ДВС с изменяемой степенью сжатия.

Навсегда или до лучших времен – об этом мы обязательно напишем на страницах «Автоцентра», если не в рубрике «Новости», то в нашем следующем юбилейном обзоре.

Революция в моторостроении позволила создать малообъемные, но мощные и экологичные моторы с уникальными характеристиками.

Система впуска

Уже в своих первых номерах «Автоцентр» писал о двигателях с изменяемыми фазами газораспределения – дорогих и потому малораспространенных.

И если тогда моментом и временем открытия клапанов могли управлять только такие продвинутые «мотористы», как Honda, BMW и Mitsubishi, то к 2003 году это умели даже неторопливые в новациях американцы из GM.

Сегодня системы изменения фаз газораспределения применяются и на массовых автомобилях ведущих производителей: VTEC, VANOS, AVS, CVVT, VVT-i… Еще дальше пошел BMW – с 2001 года некоторые его моторы обходятся без дроссельной заслонки: ее заменяет система Valvetronic, регулирующая высоту подъема клапанов. Бездроссельный вариант подхватили и другие автопроизводители, например, тот же Fiat с его новым двухцилиндровым мотором AirTwin мощностью 85 л. с.

Система питания

В 1997 году, в первых номерах «Автоцентра», мы рассказывали о многообещающей серийной новинке – бензиновом двигателе GDI с непосредственным впрыском топлива от Mitsubishi. Послойное смесе­образование и сверхобедненные смеси (40:1) обеспечивали высокие удельную мощность, экономичность и экологичность.

К 2000 году и позже такой технологией уже обзавелись Toyota (D-4), Nissan (DI), Peugeot-Citroёn (HPi), BMW (HPi), Mercedes-Benz (CGI), VW (TSI). Однако GDI и его аналоги опередили свое время: в 2007-м даже сама Mitsubishi сократила выпуск этого мотора до одной модели.

Но через пару лет двигатели с непосредственным впрыском массово выпускали уже несколько компаний, и сегодня они есть у большинства ведущих производителей. В 2004 г. VW дал новый толчок развитию систем питания и моторных технологий: компания смогла совместить непосредственный впрыск и наддув.

Еще более эффективными оказались появившиеся в 2006-м моторы семейства TSI c турбо- и механическим компрессорами, эффективно нагнетающими воздух в цилинд­ры, начиная с холостых оборотов, причем каждый на разных режимах.

Совмещение непосредственного впрыска и турбонаддува позволило получать моторы с очень большой удельной мощностью, что послужило точком к созданию малообъемных 3- и 2-цилиндровых моторов. Но не только непосредственный впрыск в паре с турбонаддувом совершили революцию. Параллельно с ними совершенствовались все компоненты системы питания.

Росло давление впрыска бензина: если в обычных системах впрыска рабочее давление 3–5 бар, то в 2006 г. VW TSI впрыскивал бензин под давлением 150 бар. Еще в 2003 г. Siemens показал форсунку для системы питания с давлением впрыска бензина 200 бар. Для лучшего смесеобразования конструкторы увеличили число отверстий распылителя инжекторов. Сначала у инжекторов было по одному распылительному отверстию, в 2004 году их стало шесть, а в 2005-м появились форсунки с восемью отверстиями.

Силы и силенки

Удельная мощность силовых агрегатов за минувшие 15 лет выросла радикально. Благодаря совершенным системам питания и эффективным системам наддува при меньшем рабочем объеме (а значит – массе) силового агрегата мощность повысилась.

VW Golf 1997 г.: 2,3 л VR5 150 л. с. 205 Нм – VW Golf 2012 г.: 1,4 л TSI 160 л. с. 240 Нм.

Ford Escort 1997 г.: 1,8 л 116 л. с. 160 Нм – Ford Focus 2012 г.: 1,0 л 125 л. с. 200 Нм.

Наддув

В «детские» годы «Автоцентра» в любом каталоге можно было найти дюжину моделей с атмосферным дизелем, а наддувный бензиновый агрегат считался прерогативой едва ли не спорткаров. Сегодня наддувные агрегаты стоят во главе прогресса: они творят чудеса, превращая малолитражные моторчики в силовые агрегаты для авто В- и С-класса.

Старую идею объединения двух типов наддува – турбины и приводного компрессора – общедоступной сделал VW в 2006 г. Новый 1,4-литровый бензиновый двигатель с непосредственным впрыском VW TSI получил характеристики на уровне 2,5-литровых «атмосферников», демонстрируя пример экономичности и экологичности.

Электронный блок управления, активируя компрессор на «низах» и чуть «выше» и турбину на средних и высоких оборотах, обеспечивает максимальный крутящий момент в широком диапазоне оборотов. В 2009-м BMW усовершенствовал турбину типа Twin Scroll, добавив к разделенной трубе, подводящей выхлопные газы к лопаткам «горячего» колеса, вторую «улитку».

Грядет эра электрокомпрессоров. Так, компания Valeo приобрела одного из разработчиков и изготовителей подобных нагнетателей.

Особая архитектура

С точки зрения компоновки силовых агрегатов за последние 15 лет мало что изменилось. Очень интересны своим высоким уровнем технологий и компактностью многолитровые силовые агрегаты необычных схем – VR6, W8, W12 – все так же остаются достоянием малотиражных моделей и версий. Однако в 2011 г.

компания BMW, одна из законодательниц моторостроительной моды, объявила о применении нового принципа конструирования своих моторов. Отныне баварские агрегаты будут «собираться» из унифицированных цилиндров и прочих стандартизированных узлов – как из кубиков: так дешевле.

Совершенно оригинальные, мощные и компактные роторные «Ванкели» в 1997 году выпускались лишь «ВАЗом» и Mazda. Но даже «японка» RX-8 образца 2003-го (на фото внизу) не дожила до наших дней. Так и не прописались под капотами серийных авто моторы с изменяемой степенью сжатия типа SVC (2000 г.), FEV Motorentechnik и MCE-5 (2008 г.): высокая отдача (1,6 л – 225 л. с.

и 305 Нм), бензиновая всеядность и экономичность так и не перевесили сложностей конструкции. В той же копилке интересных идей остались пока двигатели типа DiesOtto и HCCI, разработанные Mercedes и GM, функционирующие одновременно по принципу дизеля и искрового зажигания. Характеристики их хороши (1,8 л – 238 л. с.

и 400 Нм), но затраты на доводку пока непозволительно высоки. Одним словом, ни один из двигателей нестандартной компоновки, которые наблюдал «Автоцентр» в течение своих первых пятнадцати лет, не стал массовым.

Дизелизация

С начала «Автоцентр» писал о дизелях исключительно в рубрике «Подержанные автомобили» – новые машины с такими моторами в Украину практически не завозились из-за некачественного топлива.

Однако с середины 2000-х топливо улучшилось, а дизельные авто превратились в динамичные машины. На наших глазах совершенствовалась систе­ма впрыска топлива. В 1997-м появляется управляемая электроникой система Common Rail, в 1998-м – насос-форсунки.

Следом за электромагнитными форсунками с 2003-го начинается внедрение быстродействующих пьезоэлектрических. В 2005 г. они успевают впрыскивать до 5 порций топлива за один цикл, 2010 г. – 6 порций, чем смягчают работу дизеля и повышают его эффективность.

Форсунки стали оснащаться распылителями со все большим числом отверстий – шесть, затем восемь. Растет и давление топлива: 1350, 1800, 2000, 2500 бар.

Игорь ШирокунФото из архива редакции

Autocentre.ua

Источник: http://autooboz.info/2012/03/evolyuciya-dvs-bolshe-sil-pri-menshem-obyome/

Несовершенство непосредственности: надежность и проблемы моторов с прямым впрыском

Совершенство непосредственности: 80 лет эволюции моторов с прямым впрыском

«В новый век – с новой системой питания!». Похоже, с таким девизом европейские производители стали внедрять технологию.

А что им оставалось? Требования по снижению расхода топлива заставляли делать моторы сложнее, к тому же непосредственный впрыск (особенно в сочетании с наддувом) позволял увеличить мощность. И при этом оставлял мотор вполне экономичным на малой нагрузке.

Начал входить в моду и даунсайз – постепенно для машины С-класса стало вполне нормальным иметь мотор объемом в литр, а мощные авто начинаются с объема в 1,4. Даже седаны D+ и Е классов не брезгуют моторами 1,4 и 1,6 с турбонаддувом.

Снова те же грабли, но в XXI веке

Собственно о минусах подобной системы питания было известно с самого начала. Сложность и высокая стоимость сюрпризом не были – опыт внедрения непосредственного впрыска накопился изрядный. Надежность сложных систем честно постарались увеличить. Правда, цену особенно опустить не пытались.

Как известно, для подачи топлива непосредственно в цилиндры нужен насос высокого давления. Вообще-то и в системах «обычного» распределенного впрыска в системе питания давление немаленькое, но у прямого впрыска оно примерно в 10 раз больше.

НА ДИЗЕЛЬНЫХ МОТОРАХ НЕПОСРЕДСТВЕННЫЙ ВПРЫСК И ТНВД ПОЯВИЛСЯ СУЩЕСТВЕННО РАНЬШЕ, И РЕСУРС УЗЛОВ БЫЛ НЕ ТАКИМ УЖ НИЗКИМ. У БЕНЗИНОВЫХ ВСЕ ПОЛУЧИЛОСЬ ИНАЧЕ: НАСОСЫ ОКАЗАЛИСЬ ВЕСЬМА НЕДОЛГОВЕЧНЫМИ. ПОЧЕМУ? ПОТОМУ ЧТО ДИЗТОПЛИВО ИМЕЕТ БОЛЕЕ ВЫСОКИЕ СМАЗОЧНЫЕ СВОЙСТВА, ЧЕМ БЕНЗИН, И БЕЗ СПЕЦИАЛЬНЫХ СМАЗЫВАЮЩИХ ПРИСАДОК РЕСУРС ВСЕХ УЗЛОВ ТРЕНИЯ ОЧЕНЬ МАЛ.

Современные мембранные ТНВД не так зависят от смазки, как поршневые, но, тем не менее, нуждаются в ней. Да и в целом насос высокого давления – штука довольно хрупкая, любые загрязнения выведут его из строя. Улучшить ситуацию смогли введением стандарта на смазывающие присадки в топливе.

Конечно, 15% масла, как в двухтактные моторы, добавлять не стали, но топливо Евро-4 и выше обязательно содержит небольшое количество специальных смазок. Не в последнюю очередь – именно для ТНВД на бензиновых машинах.

Учитывая, что официальный запрет на продажу топлива Евро-3 вступил в России в силу лишь 1 января 2015 года, неудивительно, что «непосредственные» машины у нас жили так недолго и несчастливо.

С форсунками ситуация аналогичная, они дороже и менее надежны, чем на системах распределенного впрыска. Требования к их работе тоже намного выше. Небольшое изменение факела распыла, даже без изменения общего расхода подачи, ведет к серьезным нарушением работы мотора. В результате для сохранения работоспособности резко растут требования по чистоте топлива и рабочей температуре.

Пьезофорсунки еще и имеют ограниченное количество циклов срабатывания, чувствительны к перегреву, а также обладают склонностью при выходе из строя «лить» бензин, что может вызвать гидроудар при запуске.

Особенно это характерно для очень распространенных «высокоточных» пьезофорсунок Bosch, которые имеют ограниченный ресурс, а компания на протяжении последних десяти лет не может создать действительно хорошо работающий вариант.

Склонность к закоксовке впускных клапанов и худшие условия их работы проявились на моторах Мицубиси довольно быстро. Обычно форсунки подают бензин на впускной клапан и охлаждают его. И заодно смывают с него отложения.

У непосредственного мотора такой возможности нет, клапан греется сильнее, больше нагревает воздух, а масло из системы вентиляции картера и из сальника клапана постепенно образует «шубу», которая затрудняет газообмен и приводит к зависанию клапанов и его перегреву.

Особенно тяжело приходится моторам с повышенным расходом масла, а в самой критической группе риска – моторы, которые часто работают с малой нагрузкой, то есть в пробках.

Плохие пусковые качества из-за неудовлетворительного испарения топлива при пуске тоже проявились давно. Оказалось, что оптимизация формы факела впрыска на холодном и горячем моторе должна производиться более тщательно.

Любое попадание топлива на стенки цилиндра приводит к резкому увеличению количества несгоревшего топлива и попаданию его в масло.

А при запуске при отрицательных температурах большое значение приобретает качество распыла бензина: оно должно оказаться намного выше, чем при обычной работе, и давление топлива на пуске должно быть очень высоким. Поначалу этого не учли.

Повышенное количество твердых частиц в выхлопе проявилось позже, когда непосредственный впрыск на европейских машинах уже стал мэйнстримом.

Более точные исследования показали, что эта особенность смесеобразования роднит такой бензиновый мотор с дизелем. Действительно, в процессе работы образуются частички сажи, которые необходимо тоже как-то задерживать.

Например, вводя сажевый фильтр, как на дизельных моторах. Компания Mercedes уже анонсировала подобную опцию для своих машин.

Попадание топлива в масло из-за неисправностей топливного насоса высокого давления – в общем-то чисто конструктивный недостаток насосов Bosch, но в силу их широкого распространения и общности конструкций насосов свойственен почти всем моторам с непосредственным впрыском. Бензин в масле не так уж и страшен, но в больших количествах ведет к снижению вязкости масла до критической, что приводит к повреждениям моторов. И, к тому же, дает повод многим «экспертам» говорить о том, что топливо является причиной «масляной чумы».

Что же делать?

Почти у всех проблем есть пути решения. Например, двойной впрыск, когда топливо подается и в цилиндры, и во впускной трубопровод – это справляется сразу со сложностью с закоксовкой клапанов, экологичностью и плохим запуском в холода.

Такая схема применялась на некоторых двигателях Volkswagen EA888, но продавались они исключительно в США и были заточены под жесткие экологические нормы Калифорнии. Но в конце 2014-го комбинированный впрыск появился и у нас – на моторе 6AR-FE (2 литра, 150 л. с.) Toyota Camry последнего поколения.

Пока сложно судить о надежности, ибо пробеги машин пока небольшие в основной массе, однако предпосылки хорошие.

Под капотом 2015–н.в. Toyota Camry XLE

С поршневыми кольцами и топливными насосами приходится разбираться чисто конструктивными методами, экспериментируя с формой – часто «дизайн» поршневой группы производители дорабатывают уже после того, как машина вышла на рынок и поразила всех угаром масла. Так, скажем, делала Toyota в 2005 году, доводя до ума моторы серии ZZ (еще без непосредственно впрыска), а позже – Volkswagen с уже упомянутыми выше EA888. Насосы высокого давления тоже стараются сделать надежнее – эта задача технически выполнима.

Но все непросто: система очень сложная и дорогая – накладным для производителей выходит не только себестоимость конечной продукции, но и исследования с экспериментами. А маркетологи не дают возможности по 10 лет заниматься испытаниями, требуют все более новых моторов с еще более привлекательными характеристиками.

Рискнуть в сегодняшнем автобизнесе репутацией производителя ненадежных машин считается делом благородным. Если что, всегда выручит отзывная кампания.

Куда хуже – показаться производителем консервативным или, не дай бог, незацикленным на идее спасения планеты от выхлопных газов. Вот это, как мы видимо по примеру Volkswagen и Mitsubishi – действительно страшно.

Тут можно и самостоятельность компании потерять, и топ-менеджмента лишиться.

источник

Источник: https://123ru.net/auto/146798437/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.